

By/Mohamed Elsayed Mohamed

Content

- Introduction
- Arduino IDE
- Code Structure
- Variables Declaration
- Arithmetic Operators
- Control Statements
- Loops
- Functions
- I/O Instructions
- Serial Instructions
- Tasks

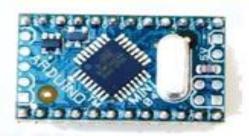
Introduction

What is Arduino?

- Arduino is an open-source computing platform based on a simple i/o board and a software development environment.
- Arduino can be used to develop embedded systems or prototypes of embedded systems so fast and easily.

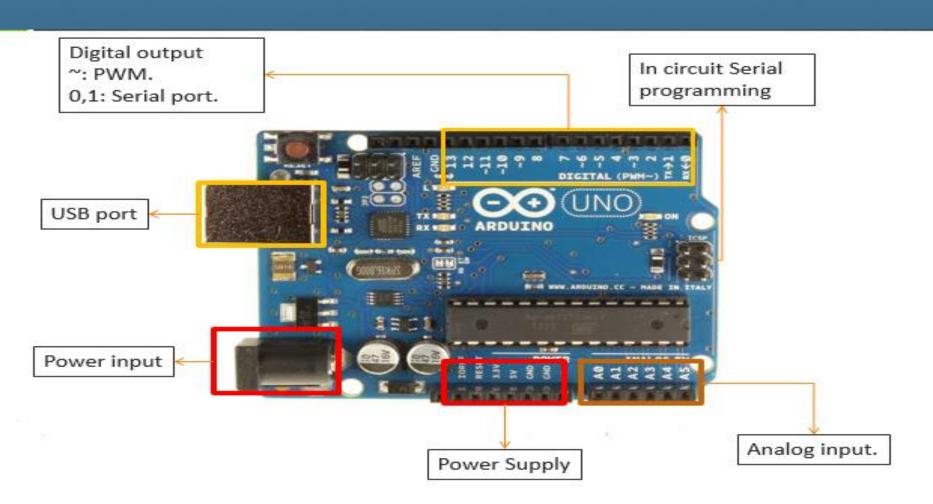
Introduction

Arduino boards


UNO

Mega

Arduino Nano

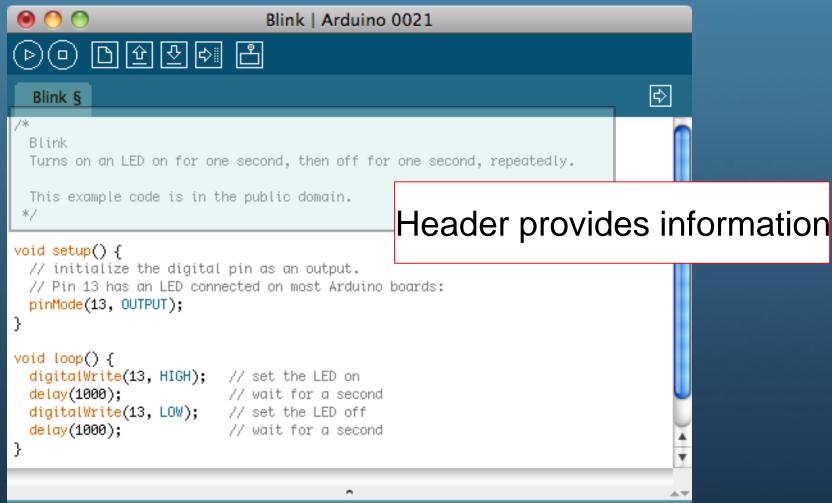

Other

Arduino Mini

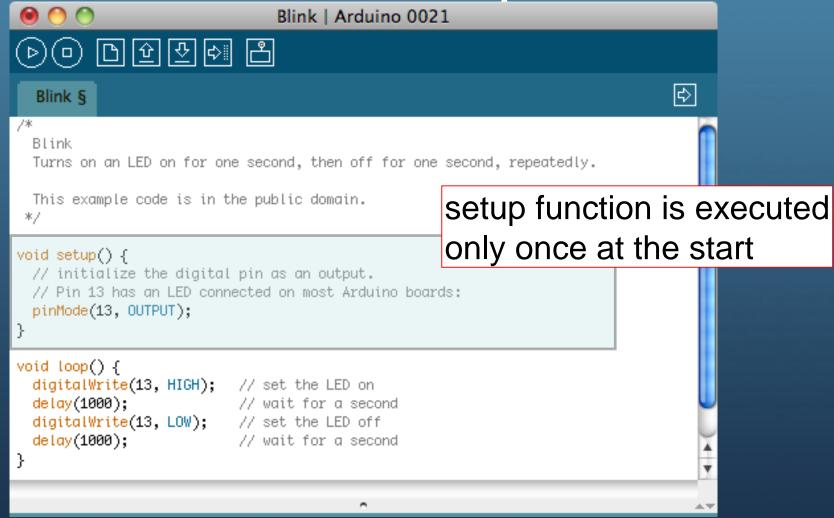
Arduino BT

Introduction

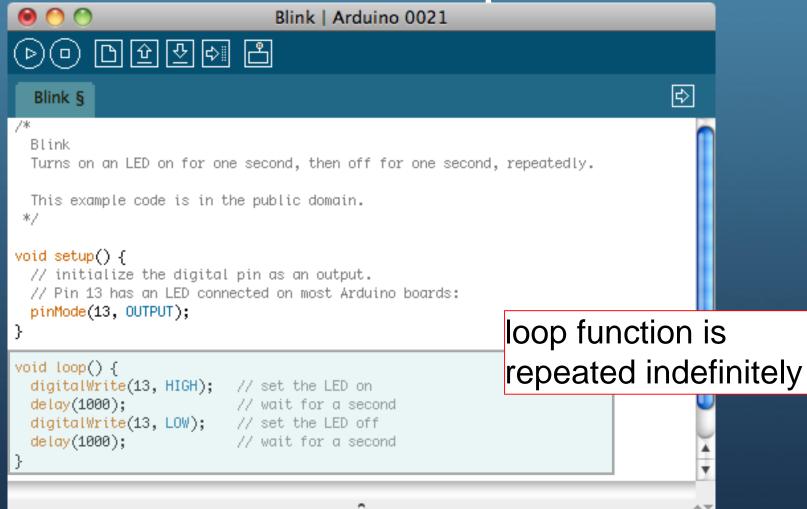
Arduino UNO



Arduino IDE


```
♦
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.
 This example code is in the public domain.
                                                                    Tab
                                                                    controls
void setup() {
 // initialize the digital pin as an output.
 // Pin 13 has an LED connected on most Arduino boards:
 pinMode(13, OUTPUT);
void loop() {
 digitalWrite(13, HIGH);
                          // set the LED on
 delay(1000);
                          // wait for a second
 digitalWrite(13, LOW);
                          // set the LED off
 delay(1000);
                          // wait for a second
                                                                Code pane
```

Message pane


Code Structure: Header

Code Structure: setup function

Code Structure: loop function

Code Structure

Curly braces { }

```
type function()
{
    statements;
}
```

Define the beginning and the end of function and statement blocks

forgetting to end a line with a semicolon will lead to compilation error !!!

• Semicolon;

Variable Declaration

Integer: used with integer variables

Ex: int x=1200;

Character: used with single character, represent value from - 127 to 128.

Ex. char c='r';

Long: Long variables are extended size variables for number storage, and store 32 bits (4 bytes), from -2,147,483,648 to 2,147,483,647.

Ex. long u=199203;

Floating-point numbers can be as large as 3.4028235E+38 and as low as -3.4028235E+38. They are stored as 32 bits (4 bytes) of information.

Ex. float num=1.291;

[The same as **double** type]

Variable Scope

```
int value;
                           // 'value' is visible
                           // to any function
void setup()
                                     Global variable
 // no setup needed
                                     Local variable
void loop()
  for (int i=0; i<20;)
                         // 'i' is only visible
                         // inside the for-loop
    i++;
                         // 'f' is only visible
  float f;
                         // inside loop
```

Arithmetic Operators

```
y = y + 3;
x = x - 7;
i = j * 6;
r = r / 5;
```

Compound Assignment

```
x ++  // same as x = x + 1, or increments x by +1 x --  // same as x = x - 1, or decrements x by -1 x += y // same as x = x + y, or increments x by +y x -= y // same as x = x - y, or decrements x by -y x *= y // same as x = x * y, or multiplies x by y x /= y // same as x = x / y, or divides x by y
```

Comparison Operators

```
x == y // x is equal to y
x != y // x is not equal to y
x < y // x is less than y
x > y // x is greater than y
x <= y // x is less than or equal to y
x >= y // x is greater than or equal to y
```

Logical Operators

```
Logical AND:

if (x > 0 \&\& x < 5) // true only if both

// expressions are true

Logical OR:

if (x > 0 \mid \mid y > 0) // true if either

// expression is true

Logical NOT:

if (!x > 0) // true only if

// expression is false
```

Control statements

If statement

```
if (someVariable ?? value)
{
  doSomething;
}
```

If(x=10)

If(x==10)

Control statements

If....else statement

```
if (inputPin == HIGH)
{
   doThingA;
}
else
{
   doThingB;
}
```

Control statements

If....else statement

```
if (inputPin < 500)
  doThingA;
else if (inputPin >= 1000)
  doThingB;
else
  doThingC;
```

Loop statements

For Loop

```
for (initialization; condition; expression)
{
   doSomething;
}
```

Loop statements

While Loop

```
while (someVariable ?? value)
{
  doSomething;
}
```

Loop statements

do...while Loop

```
do
{
   doSomething;
} while (someVariable ?? value);
```

Functions

```
type functionName(parameters)
{
   statements;
}
```

Digital I/O instructions

pinMode(pin,mode)

```
pinMode(pin, OUTPUT); // sets 'pin' to output
```

digitalRead(pin)

digitalWrite(pin,value)

```
digitalWrite(pin, HIGH); // sets 'pin' to high
```

Analog I/O instructions

analogRead(pin)

```
value = analogRead(pin); // sets 'value' equal to 'pin'
```

Analog pins don't need to be declared as INPUT or OUTPUT

The resulting value range from 0 to 1023

analogWrite(pin,value)

```
analogWrite(pin, value); // writes 'value' to analog 'pin'
```

Writing an analog value using (PWM) to PWM pins 3,5,6,9,10

The value can be between 0-255

Serial instructions

Serial.begin(rate)

```
void setup()
{
   Serial.begin(9600); // opens serial port
}   // sets data rate to 9600 bps
```

Serial.println(data)

Delay instructions

delay(ms)

```
delay(1000); // waits for one second
```

millis()

```
value = millis(); // sets 'value' equal to millis()
```

Functions

```
void setup() {
 Serial.begin(9600);
 DashedLine(); Function is called here
  Serial.println("| Program Menu |");
 DashedLine(); — Function is called again
void loop() {
}
void DashedLine()
 Serial.println("----");
}
```

Functions

```
void setup() {
 Serial.begin(9600);
 DashedLine():
 Serial.println(" | Program Menu |");
 DashedLine():
void loop() {
void DashedLine()
 Serial.println("-----");
```

```
void setup() {
  Serial.begin(9600);
  // draw the menu box
 DashedLine(24);
  Serial.println("| Program Options Menu |");
 DashedLine(24);
void loop() {
}
void DashedLine(int len)
  int i;
  // draw the line
  for (i = 0; i < len; i++) {</pre>
    Serial.print("-");
  // move the cursor to the next line
  Serial.println("");
```

Tasks

- 1) Execute an Arduino sketch to simply turn a led on and off, the led is connected to pin 13 and is blinked every second.
- 2) Execute an Arduino sketch to simply read a switch connected to pin 2 to control a led connected to pin 13.
- 3) Execute an Arduino sketch to simply brighten and dim a led connected to any PWM pins.
- Execute an Arduino sketch that model traffic lightening system using red, yellow, and green leds.
- Execute an Arduino sketch that use LDR sensor to control the lighting of a led connected to pin 13.

References

- Evans, B. (2011). Beginning Arduino Programming, Apress
- https://www.slideshare.net/avikdhupar/intro-to-arduino
- https://www.slideshare.net/xxahmedsakrxx/introduction-toarduino
- www.Arduino.com

Thank you

